
GoLFS: A Fault-tolerant GFS Implementation

Tony Mu
Stanford University

tonymu@stanford.edu

Abstract— The Google File System is a classic dis-
tributed file system that is both scalable and fault-
tolerant. However, they have not open-sourced their code
and the software is not available for public research
and use [1]. The GoLFS system attempts to create an
implementation of the Google File System using Golang.
Due to the short duration of the course, however, GoLFS
only contains most of the basic features, including all
file operations, garbage collection, chunk replication, and
master state recovery. Aside from features, unit tests are
in place to ensure correctness. For evaluation, this paper
mainly focuses on exploring the throughput and fault-
tolerant properties of the system, using a probabilistic
failure model to quantify master availability and simulate
failures.

I. INTRODUCTION

In the domain of distributed systems, system
errors are frequent and inherent occurrences. Fac-
tors include network delays and packet losses,
hardware failures, and human oversight. Conse-
quently, in contexts where the CAP theorem finds
relevance, it is common for modern distributed sys-
tems to prioritize partition-tolerance, while making
trade-offs between availability and consistency. A
notable example illustrating these principles is the
Google File System (GFS), a robust distributed file
system engineered to accommodate large files on
commodity hardware [1].

The Google File System presents several wise
design decisions and desirable properties. First,
GFS is simple and easy to understand. At its core,
GFS features a single master server serving as a
centralized state manager. Additionally, GFS delib-
erately aims to reduce the interactions between the
master server and file servers (referred to as chunk
servers in the original paper). For state changes
(such as filename update), the system employs
a flexible lease mechanism, which hides away
much complexity within the master server [1].

These decisions contribute to the straightforward
and error-proof implementation of GFS.

Second, GFS tolerates numerous points of fail-
ure. Each file chunk is replicated across multiple
chunk servers, typically three times as outlined in
the original paper, with each replica residing on a
distinct server (preferably in geographical regions).
Furthermore, through the frequent exchanges of
heartbeat messages between master and chunk
servers, their states are updated and any failures
is detected within the system. Upon receiving a
deletion request from a client, the master merely
marks the file as deleted, while the physical file
is kept safe for a period of time before undergo-
ing garbage collection. Although the master node
represents a potential single point of failure, it
mitigates this risk by only committing its state
changes after persisting the change onto a hard
disk [1].

Finally, GFS is strongly consistent. The design
decision of a single master means there is no
need for master replication. Consequently, this also
eliminates the necessity for synchronization among
master replicas. While this design choice may
constrain throughput and availability, it guarantees
the consistency of the file system state [1].

Although GFS has many commendable prop-
erties and design decisions, its initial design by
Google engineers dates back to 2003, now over
two decades ago [1]. In hindsight, certain design
choices, such as single master, appear outdated and
hinder GFS’s ability to scale. Furthermore, while
the system’s design and architecture have been
well-documented in an academic paper, access to
the source code remains restricted and unavailable
to the public. Thus, this paper attempts to demon-
strates some of aforementioned properties through
an implementation in Golang. This paper will
also attempt to delve into some of the potentially



Fig. 1. GFS/GoLFS Architecture [1]

antiquated design decisions in later discussion.

II. SYSTEM ARCHITECTURE

The system architectures are well-documented
in the original paper. Thus, this section will only
briefly touch on some highlights in the original
architecture. The rest of the section will mainly
focus on differences in the original implementation
and GoLFS implementation of GFS.

In the original Google File System (GFS) imple-
mentation, three primary components were speci-
fied: a single master node, chunk server nodes, and
clients. The master node manages various aspects
of the file system, including file metadata, chunk
server metadata, and chunk metadata. Addition-
ally, it handles tasks such as garbage collection
of files and of failed chunk servers. Master is
monitored and recovered by external processes.
Clients communicate exclusively with the master
for metadata operations and push physical file
updates to chunk servers. Chunk servers establish
connections with the master using a well-known
IP or domain name within the cluster. Master
and chunk servers frequently exchange heartbeat
messages to update states and help master to detect
failed chunk servers and out-dated chunks, as well
as renew leases. Files are divided into fixed-size
chunks, typically 64MB in size as specified in
the original paper, each identified by a globally
unique 64-bit integer known as a chunk ID. These
chunks are replicated multiple times [1]. All these
features have been implemented in GoLFS. The
architecture can be found in (Figure 1) taken from
the original GFS paper [1].

Additionally, the original paper introduces two
valuable features: master snapshot and atomic
record append. Reads are strategically served
based on network topology to optimize response
times. The master node is responsible for tasks

such as re-replication, re-balancing of missing
chunks, and garbage collection of outdated chunks.
However, due to the project’s limited scope, these
features have not been implemented in GoLFS.

III. IMPLEMENTATION

While the original paper provides an overview
for GFS, it leaves out some minor details. The
following sections will outline detailed implemen-
tation of GoLFS based on the original paper. Each
section specifies a major feature of the system.
Many parts of the system will be highlighted and
explained through the implementation notes.

A. Create
The GoLFS system works the following way for

a typical create workflow. When the client receives
an upload file call, it first computes the number
of chunks based on the file size, and the fixed
chunk size. Then, the client calls master’s Create
remote procedure, with the filename and number
of chunks as arguments. The master will save
this information in its internal state, by creating
a new entry in the FileMetadata map with file
name as key and chunkHandles as values, and a
new entry in the ChunkMetadata with chunk
handle as key, and chunk’s server location as value.
The master node then returns the chunk handle
and chunk locations to the client. The client uses
this data to call chunk server along with the file
content. Each chunk server then saves the content
at local disk, using chunk handle as file name, and
acks client’s request.

In GoLFS, the master will replicate the chunks
once created, based on a pre-configured number.
The master’s reply will contain the address for all
chunk replicas, including the primary. The client
will then be responsible for uploading the chunk
content to all replicas in different servers.

For chunk placement, the original paper has
described several sophisticated strategies based on
minimizing chunk server’s chunk count and mini-
mizing network distances. Due to time constraint
on this project, GoLFS simply adopts a round
robin strategy for chunk placement. This can easily
be optimized by using a min-heap of all chunk
servers at master, using chunk replica count as
weight. We guarantee chunk placement will always
be on the least loaded chunk servers.



B. Read
For the read operation, the client calls master’s

Read remote procedure with file name as argu-
ment. The master returns a list of chunk metadata
which consists of chunk handle and chunk server
address. The client uses this data to call each chunk
server’s Read remote procedure, and return the
file content of that chunk. The client merges each
chunk together to form the final file.

C. Write
The file mutation operation is the most complex

of all basic file operations. To start, the client
first asks master which chunk server has the lease
for the chunk handle, and the location of all its
replicas, by calling master’s GetPrimary RPC.
Master will reply with identity of the primary
chunk server and all other replicas. If no chunk
server has the lease for the chunk, the master will
grant a chunk server of its choosing.

Once the client receives reply from master, it
pushes data to all replicas in any order by using
the Write RPC on the chunk servers. Chunk
servers which receive the data caches the data
in an LRU buffer without updating the chunks.
Once all replica servers acknowledge the client
about the reception of mutation data and return an
update ID, the client will send a CommitWrite
call to the primary chunk server with the update
IDs. The primary chunk server will then commit
the write in its chunks, and oversees all replica
chunk servers to commit their own writes. Only
after all replicas successfully commit their writes,
the primary replica server will reply success to the
client, and the mutation operation concludes here.
If any of the replicas servers fails, the request is
retried.

When granting leases, the master will attempt
to make an intelligent decision when choosing
chunk server. Since the primary chunk server will
be responsible for communicating and propagating
the update to all replica chunk servers, it makes
sense to minimize the distance between it and
all other chunk servers. This may be achieved by
using a shortest path algorithm.

D. Delete
When a master’s Delete RPC is called, it

marks the file as to be deleted and hidden, by

adding a dot prefix to its file name, then ac-
knowledges the client request immediately. The
file will be retained for a pre-configured period
(three days in the original paper), then the garbage
collection worker will ask the chunk server to
remove these chunks permanently. More details
below in the Garbage Collection section. During
the file retention period, the client may still access
the file through a special call, thus providing
reliability and error-proof property to the client and
applications.

E. File Garbage Collection
In GoLFS, the master will initialize a File

Garbage Collection worker that runs on a timed
schedule. After the master marks a file as to
be deleted, it will also record the timestamp of
the deletion request. When the worker wakes and
perform its action, it will scan the master state’s
file metadata section, and if it finds any file with
deletion timestamp older than the retention period
(three days), it will send Delete requests to all
the chunk servers holding these chunk replicas. Af-
ter all chunk servers acknowledge the completion
of the delete operation, the worker will remove the
entry from the file metadata.

F. Chunk Server Failure Detection
The master will also initialize a Chunk Server

Failure Detection worker that runs on a time sched-
ule. This worker will periodically scan master
state’s chunk server metadata section, and if any
chunk server’s LastPingTimeStamp is more
than a preset period, it will attempt to Ping the
chunk server. If an acknoledgement is received, it
will update the timestamp to the latest; otherwise,
it will remove the chunk server entry from master
state.

G. Failure Recovery
The master flushes its state to persistent storage

after every state change in an atomic operation.
This guarantees master state will always be consis-
tent with some sacrifice in availability and latency.
On master start, it will first check if any state can
be recovered, and attempt to recover from an older
state.

In GoLFS, an external monitor process acts as
a both failure detector and a recovery tool in the



case of master failure. It runs on a time schedule
and keeps checking if master is running. Once it
detects master is down, it will restart the master
process.

H. Mutual Exclusion
Almost all system states are manage by the

single master process, making synchronizing con-
current operations easy to program. In GoLFS,
the master employees read-write locks on each of
its metadata sections (File, Chunk, ChunkServer).
This ensures the correctness of concurrent opera-
tions.

IV. EVALUATION

Due to the scope of this paper, the evaluation
of GoLFS focuses mainly on the fault-tolerant
and throughput of the system. Each experiments
is repeated with the same iterations, but different
number of clients and master availability.

A. Methodology
Due to resource constraints, the entire cluster

runs as a single virtual cluster. That is, all applica-
tions, clients, and servers run on the same physical
node as processes, each has their own network
address. The following measurements are collected
on a GoLFS cluster which consists of a single
master process and seven chunk server processes.
Number of clients varies from two to eight based
on the running experiments. Each clients will run
twenty iterations before reporting the total time
elapsed for its run. All clients start at the same
time and run concurrently. The final duration is
measured by the longest running client process.

An external process is setup to monitor master’s
health, and will restart the master if it can no
longer detect master’s presence. The monitor is a
bash job and runs every second.

To simulate master failure, another external pro-
cess is created. This process has a pre-defined
availability parameter (from zero to one-hundred).
Every three seconds, it randomly generates a
number between zero and one-hundred, using a
uniform distribution. If the randomly generated
number is less than the availability parameter, the
master is assumed to continue to live. However,
if the randomly generated number exceeds the
availability parameter, then the process will find

and kill the master process, allowing the monitor
process to come in and resurrect master, thus
completing the master’s failure-recovery loop.

B. Discussion
Two major experiments are conducted on the

same cluster setup specified in the methodology
section. First experiment focuses on read only
traffic, while the second on write only traffic. Each
experiment results is discussed below in details.

For the read only experiment, the number of
clients has an impact on the latency of the replies
(Figure 2). This demonstrates the lack of scala-
bility of a single master: the entire system can
be easily bound by master’s compute power. To
address this issue, some solutions are discussed in
the Future Work section.

Another interesting observation from the read
only experiment is that, availability does not have
a visible impact on latency for master availability
above 40%. However, when master availability
drops below 40%, the latency increases drastically.

In the write only experiment, similar things
can be said about impact of client count and
availability (Figure 3). One interesting observation
is that write has much lower read traffic. This is
possibly due to the fact that the experiment uses
writes of one megabyte, which is tiny compared
to real-world, production workloads. However, it
can be argued that the relative latency trend should
remain similar even for larger write requests, due
to the lightweight workload of master server, and
an efficient chunk placement strategy among the
chunk servers which will be doing the heavier
chunk updates.

V. RELATED WORK

Several attempts have been made by students
of CS244B to implement the Google File System.
Among which, the Google File System 2.0 [3]
is the most mature and production ready. The
authors leveraged many open source techonologies
and solutions such as Docker and LevelDB, and
employed strategies like multi-master to address
some shortcomings of the original design of GFS.
Another attempt was the Simplified GFS made in
Python [2]. This project is lightweight and employs
many features from the original GFS. GoLFS is
more similar in scope as Simplified GFS project.



Fig. 2. Enter Caption

Fig. 3. Enter Caption

VI. FUTURE WORK

Due to time constraint of the semester, only
limited features are implemented in this initial
version of GoLFS. Some missing features include
snapshot feature, atomic record append, chunk re-
balancing and re-replication, as well as more effi-
cient strategies for chunk placement, and primary
chunk selection.

Aside from the missing features based on the
original paper, a few potential items could further
improve the GoLFS system. One improvement is
to incorporate multiple master servers. The master
cluster can be set up as either an active-active
cluster, or an active-passive cluster. The master
servers can synchronize with each other through
a consensus algorithm such as Raft [4]. Having a
multi-master architecture will undeniably increase
scalability and further improve availability of the
system. However, the system will have less of a
consistency guarantee, due to some master may
lag behind from synchronization latency. Further
experiments are needed to determine the viability
and performance impact of such approach.

An alternative approach is to decouple master
server and master state. We may consider making
master node a stateless serving layer, and use
a distributed cache system like Redis [6], along
with a distributed key-value store like Cassandra
[5] to persist state. Using this approach, we are
able to scale the stateless nodes if computation
is a bottleneck, or scale the distributed storage if
storage is a bottleneck.

Yet another improvement for GoLFS would be
to implement an append-only logging system for
master state recovery. Using an append-only log
for master state persistence, as opposed to check-
pointing, will drastically lower master’s commit
latency. While using an append-only log may slow
down failure recovery speed, since modern hard-
ware is more reliable than ever, hardware failures
become more rare, so the drawback becomes neg-
ligible.

VII. CONCLUSION

The GoLFS project implements the GFS system
as specified in the original paper from Google. It
uses Golang and bash scripts to set up virtual clus-
ters for experiments and testing. It demonstrates
that, based on the original GFS design, GoLFS
can achieve fault-tolerant properties without much
impact on performance. The paper also discusses
some potential workaround for known issues such
as the bottleneck at master, and using an append-
only log to persist master state.

VIII. SOURCE CODE

The GoLFS project is completely
open-sourced, and the source code
repository can be found on Github at
https://github.com/tonymuu/GLFS.

REFERENCES

[1] Ghemawat, S.; Gobioff, H.; Leung, S. (2003). ”The Google
File System”.

[2] Lin, J. (2020). ”Simplified GFS”.
[3] Okutubo, B.; Tu, G.; Cheng, X. (2020). ”Google File System

2.0: A Modern Design and Implementation”.
[4] Ongaro, D.; Ousterhout, J. (2014). ”In Search of an Under-

standable Consensus Algorithm”.
[5] Apache Cassandra. (2024).

https://cassandra.apache.org/doc/latest/
[6] Redis. (2024). https://redis.io/


